Resorbable scaffolds modified with collagen type I or hydroxyapatite: in vitro studies on human mesenchymal stem cells.
نویسندگان
چکیده
Poly(L-lactide-co-glycolide) (PLGA) scaffolds of pore size within the range of 250-320 μm were produced by solvent casting/ porogen leaching method. Afterwards, they were modified through adsorption of collagen type I and incubation in simulated body fluid (SBF) to allow deposition of hydroxyapatite (HAp). The wettability of the scaffolds was measured by sessile drop test. Scanning electron microscopy (SEM) evaluation and energy dispersive X-ray analysis (EDX) were also performed. SEM evaluation and EDX analysis depicted the presence of HAp deposits and a collagen layer on the pore walls on the surface and in the bulk of the scaffolds. Wettability and water droplets penetration time within the scaffolds decreased considerably after applying modifications. Human mesenchymal stem cells (hMSC) were cultured on the scaffolds for 28 days and cell morphology, proliferation and differentiation as well as calcium deposition were evaluated. Lactate dehydrogenase (LDH) activity results revealed that cells cultured on tissue culture polystyrene (TCPS) exhibited high proliferation capacity. Cell growth on the scaffolds was slower in comparison to TCPS and did not depend on modification applied. On the other hand, osteogenic differentiation of hMSC as confirmed by alkaline phosphatase (ALP) activity and mineralization results was enhanced on the scaffolds modified with hydroxyapatite and collagen.
منابع مشابه
In vitro histological investigation of interactions between rat decellularized large intestine scaffold and human adipose derived mesenchymal stem cells
The aim of this study was to investigate the interactions between rat intestine decellularized scaffold and human adipose derived mesenchymal stem cells. Rat large intestine was dissected in fragments and decellularized by physicochemical methods. The scaffolds were loaded by human adipose derived mesenchymal stem cells expressing green fluorescent protein. Microscopic sections were prepared fr...
متن کاملAdult mesenchymal stem cells for bone and cartilage engineering: effect of scaffold materials.
Bone marrow is a useful cell source for skeletal tissue engineering approaches. In vitro differentiation of marrow mesenchymal stem cells (MSCs) to chondrocytes or osteoblasts can be induced by the addition of specific growth factors to the medium. The present study evaluated the behaviour of human MSCs cultured on various scaffolds to determine whether their differentiation can be induced by c...
متن کاملComparison of Proliferation and Osteoblast Differentiation of Marrow-Derived Mesenchymal Stem Cells on Nano- and Micro-Hydroxyapatite Contained Composite Scaffolds
Bones constructed by tissue engineering are being considered as valuable materials to be used for regeneration of large defects in natural bone. In an attempt to prepare a new bone construct, in this study, proliferation and bone differentiation of marrow-derived mesenchymal stem cells (MSCs) on our recently developed composite scaffolds of nano-, micro-hydroxyapatite/ poly(l-lactic acid) were ...
متن کاملMechanical response of porous scaffolds for cartilage engineering.
Mechanical properties of scaffolds seeded with mesenchymal stem cells used for cartilage repair seem to be one of the critical factors in possible joint resurfacing. In this paper, the effect of adding hyaluronic acid, hydroxyapatite nanoparticles or chitosan nanofibers into the cross-linked collagen I on the mechanical response of the lyophilized porous scaffold has been investigated in the dr...
متن کاملPLLA/HA Nano composite scaffolds for stem cell proliferation and differentiation in tissue engineering
Abstract Due to their mulitpotency, Mesenchymal stem cells (MSCs), have the ability to proliferate and differentiate into multiple mesodermal tissues. The aim of this study was to isolate MSCs from human Umbilical Cord (hUCMSCs) to determine their osteogenic potential on nanofibrous scaffolds. To this end, Poly (L-lactic acid) (PLLA)/Nano hydroxyapatite (HA) composite nanofibrous scaffolds were...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta of bioengineering and biomechanics
دوره 15 1 شماره
صفحات -
تاریخ انتشار 2013